Goto

Collaborating Authors

 Roosevelt County


Collective Behavior Clone with Visual Attention via Neural Interaction Graph Prediction

arXiv.org Artificial Intelligence

In this paper, we propose a framework, collective behavioral cloning (CBC), to learn the underlying interaction mechanism and control policy of a swarm system. Given the trajectory data of a swarm system, we propose a graph variational autoencoder (GVAE) to learn the local interaction graph. Based on the interaction graph and swarm trajectory, we use behavioral cloning to learn the control policy of the swarm system. To demonstrate the practicality of CBC, we deploy it on a real-world decentralized vision-based robot swarm system. A visual attention network is trained based on the learned interaction graph for online neighbor selection. Experimental results show that our method outperforms previous approaches in predicting both the interaction graph and swarm actions with higher accuracy. This work offers a promising approach for understanding interaction mechanisms and swarm dynamics in future swarm robotics research. Code and data are available.


Enhancing Lossy Compression Through Cross-Field Information for Scientific Applications

arXiv.org Artificial Intelligence

Lossy compression is one of the most effective methods for reducing the size of scientific data containing multiple data fields. It reduces information density through prediction or transformation techniques to compress the data. Previous approaches use local information from a single target field when predicting target data points, limiting their potential to achieve higher compression ratios. In this paper, we identified significant cross-field correlations within scientific datasets. We propose a novel hybrid prediction model that utilizes CNN to extract cross-field information and combine it with existing local field information. Our solution enhances the prediction accuracy of lossy compressors, leading to improved compression ratios without compromising data quality. We evaluate our solution on three scientific datasets, demonstrating its ability to improve compression ratios by up to 25% under specific error bounds. Additionally, our solution preserves more data details and reduces artifacts compared to baseline approaches.


Systematic Review on Healthcare Systems Engineering utilizing ChatGPT

arXiv.org Artificial Intelligence

This paper presents an analytical framework for conducting academic reviews in the field of Healthcare Systems Engineering, employing ChatGPT, a state-of-the-art tool among recent language models. We utilized 9,809 abstract paragraphs from conference presentations to systematically review the field. The framework comprises distinct analytical processes, each employing tailored prompts and the systematic use of the ChatGPT API. Through this framework, we organized the target field into 11 topic categories and conducted a comprehensive analysis covering quantitative yearly trends and detailed sub-categories. This effort explores the potential for leveraging ChatGPT to alleviate the burden of academic reviews. Furthermore, it provides valuable insights into the dynamic landscape of Healthcare Systems Engineering research.


KI-GAN: Knowledge-Informed Generative Adversarial Networks for Enhanced Multi-Vehicle Trajectory Forecasting at Signalized Intersections

arXiv.org Artificial Intelligence

Reliable prediction of vehicle trajectories at signalized intersections is crucial to urban traffic management and autonomous driving systems. However, it presents unique challenges, due to the complex roadway layout at intersections, involvement of traffic signal controls, and interactions among different types of road users. To address these issues, we present in this paper a novel model called Knowledge-Informed Generative Adversarial Network (KI-GAN), which integrates both traffic signal information and multi-vehicle interactions to predict vehicle trajectories accurately. Additionally, we propose a specialized attention pooling method that accounts for vehicle orientation and proximity at intersections. Based on the SinD dataset, our KI-GAN model is able to achieve an Average Displacement Error (ADE) of 0.05 and a Final Displacement Error (FDE) of 0.12 for a 6-second observation and 6-second prediction cycle. When the prediction window is extended to 9 seconds, the ADE and FDE values are further reduced to 0.11 and 0.26, respectively. These results demonstrate the effectiveness of the proposed KI-GAN model in vehicle trajectory prediction under complex scenarios at signalized intersections, which represents a significant advancement in the target field.


Fully Differentiable Lagrangian Convolutional Neural Network for Continuity-Consistent Physics-Informed Precipitation Nowcasting

arXiv.org Artificial Intelligence

This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods and implements the Lagrangian coordinate system transformation of the data in a fully differentiable and GPU-accelerated manner to allow for real-time end-to-end training and inference. Based on our evaluation, LUPIN matches and exceeds the performance of the chosen benchmark, opening the door for other Lagrangian machine learning models.


Self-Supervised Knowledge-Driven Deep Learning for 3D Magnetic Inversion

arXiv.org Artificial Intelligence

The magnetic inversion method is one of the non-destructive geophysical methods, which aims to estimate the subsurface susceptibility distribution from surface magnetic anomaly data. Recently, supervised deep learning methods have been widely utilized in lots of geophysical fields including magnetic inversion. However, these methods rely heavily on synthetic training data, whose performance is limited since the synthetic data is not independently and identically distributed with the field data. Thus, we proposed to realize magnetic inversion by self-supervised deep learning. The proposed self-supervised knowledge-driven 3D magnetic inversion method (SSKMI) learns on the target field data by a closed loop of the inversion and forward models. Given that the parameters of the forward model are preset, SSKMI can optimize the inversion model by minimizing the mean absolute error between observed and re-estimated surface magnetic anomalies. Besides, there is a knowledge-driven module in the proposed inversion model, which makes the deep learning method more explicable. Meanwhile, comparative experiments demonstrate that the knowledge-driven module can accelerate the training of the proposed method and achieve better results. Since magnetic inversion is an ill-pose task, SSKMI proposed to constrain the inversion model by a guideline in the auxiliary loop. The experimental results demonstrate that the proposed method is a reliable magnetic inversion method with outstanding performance.


Multi-Scenario Ranking with Adaptive Feature Learning

arXiv.org Artificial Intelligence

Recently, Multi-Scenario Learning (MSL) is widely used in recommendation and retrieval systems in the industry because it facilitates transfer learning from different scenarios, mitigating data sparsity and reducing maintenance cost. These efforts produce different MSL paradigms by searching more optimal network structure, such as Auxiliary Network, Expert Network, and Multi-Tower Network. It is intuitive that different scenarios could hold their specific characteristics, activating the user's intents quite differently. In other words, different kinds of auxiliary features would bear varying importance under different scenarios. With more discriminative feature representations refined in a scenario-aware manner, better ranking performance could be easily obtained without expensive search for the optimal network structure. Unfortunately, this simple idea is mainly overlooked but much desired in real-world systems.Further analysis also validates the rationality of adaptive feature learning under a multi-scenario scheme. Moreover, our A/B test results on the Alibaba search advertising platform also demonstrate that Maria is superior in production environments.


Stable Target Field for Reduced Variance Score Estimation in Diffusion Models

arXiv.org Artificial Intelligence

Diffusion models generate samples by reversing a fixed forward diffusion process. Despite already providing impressive empirical results, these diffusion models algorithms can be further improved by reducing the variance of the training targets in their denoising score-matching objective. We argue that the source of such variance lies in the handling of intermediate noise-variance scales, where multiple modes in the data affect the direction of reverse paths. We propose to remedy the problem by incorporating a reference batch which we use to calculate weighted conditional scores as more stable training targets. We show that the procedure indeed helps in the challenging intermediate regime by reducing (the trace of) the covariance of training targets. The new stable targets can be seen as trading bias for reduced variance, where the bias vanishes with increasing reference batch size. Empirically, we show that the new objective improves the image quality, stability, and training speed of various popular diffusion models across datasets with both general ODE and SDE solvers. When used in combination with EDM, our method yields a current SOTA FID of 1.90 with 35 network evaluations on the unconditional CIFAR-10 generation task. The code is available at https://github.com/Newbeeer/stf


PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

arXiv.org Artificial Intelligence

We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for $N$ dimensional data by embedding paths in $N{+}D$ dimensional space while still controlling the progression with a simple scalar norm of the $D$ additional variables. The new models reduce to PFGM when $D{=}1$ and to diffusion models when $D{\to}\infty$. The flexibility of choosing $D$ allows us to trade off robustness against rigidity as increasing $D$ results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of $D$, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models ($D{\to} \infty$) to any finite $D$ values. Our experiments show that models with finite $D$ can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ $64{\times}64$ datasets, with FID scores of $1.91/2.43$ when $D{=}2048/128$. In class-conditional setting, $D{=}2048$ yields current state-of-the-art FID of $1.74$ on CIFAR-10. In addition, we demonstrate that models with smaller $D$ exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp


[2302.00670] Stable Target Field for Reduced Variance Score Estimation in Diffusion Models

#artificialintelligence

Diffusion models generate samples by reversing a fixed forward diffusion process. Despite already providing impressive empirical results, these diffusion models algorithms can be further improved by reducing the variance of the training targets in their denoising score-matching objective. We argue that the source of such variance lies in the handling of intermediate noise-variance scales, where multiple modes in the data affect the direction of reverse paths. We propose to remedy the problem by incorporating a reference batch which we use to calculate weighted conditional scores as more stable training targets. We show that the procedure indeed helps in the challenging intermediate regime by reducing (the trace of) the covariance of training targets. The new stable targets can be seen as trading bias for reduced variance, where the bias vanishes with increasing reference batch size. Empirically, we show that the new objective improves the image quality, stability, and training speed of various popular diffusion models across datasets with both general ODE and SDE solvers. When used in combination with EDM, our method yields a current SOTA FID of 1.90 with 35 network evaluations on the unconditional CIFAR-10 generation task. The code is available at https://github.com/Newbeeer/stf